

Final Thesis**Development of an agent-based model for investigating the heat
and CO₂ requirements of greenhouses****Contents:**

Biogenic CO₂ is needed as a carbon carrier in power-to-X applications and for CO₂ fertilization in greenhouses. In order to replace the predominantly "fossil" CO₂, the OxyGreenCO₂ research project is investigating the provision of "green" CO₂ from biogenic solid fuels using oxyfuel combustion. The CO₂ can be separated from the flue gas using a partial condenser. The waste heat and condensation heat from oxyfuel combustion can also be used to heat greenhouses. The oxygen required for oxyfuel combustion is produced as a by-product of water electrolysis.

In order to evaluate the economic efficiency and the interaction between the greenhouse's CO₂ and heat requirements and the electricity price-dependent supply of oxygen from electrolysis, an initial agent-based plant model is to be developed as part of the thesis. The software Anylogic will be used for this purpose. In a next step, the plant model created will be used to identify important parameters that influence the costs of heat and CO₂ supply.

Tasks:

- Literature research on the topics of agent-based simulation, electricity price-dependent oxygen supply from electrolysis, current and future CO₂ costs
- Development of an agent-based plant model using Anylogic software
- Identification of parameters that affect the costs of heat and CO₂ supply for a greenhouse
- Written documentation of the work, presentation of the results

Requirements:

- Structured and independent working style
- Independent familiarization with the software Anylogic
- Working language: German or English

Start: February/March 2026**Contact:**

Hannah Cortnum, M.Sc.

Phone: +49 911 5302 99175**E-Mail:** hannah.cortnum@fau.de