• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Energy Process Engineering
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • en
  • de
  • Mein Campus
  • UnivIS
  • FAU-directions
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Chair of Energy Process Engineering
Navigation Navigation close
  • Chair
    • Staff
    • Seating plan
    • Job offers
    Portal Chair
  • News
    • News
    • Events
    • Ph.D.-galery
    Portal News
  • Studies and Teaching
    • Courses
    • Theses options
    • The study programme ‘Energy Technology’
    Portal Studies and Teaching
  • Research
    • Research topics Prof. Karl
      • Thermochemical Conversion and Chemical Energy Storage
      • Thermal Storage Systems and Carbon Capture
      • Energy Systems and Energy Economics
    • Research topics Prof. Herkendell
    • Facilities
    • Publications
    • Research networks
    Portal Research
  • Contact
    • Directions
    Portal Contact
  1. Home
  2. Startpage of the Chair of Energy Process Engineering
  3. Research
  4. Research topics Prof. Karl
  5. Thermal Storage Systems and Carbon Capture
  6. BMWi-project: BioWasteStirling

BMWi-project: BioWasteStirling

In page navigation: Startpage of the Chair of Energy Process Engineering
  • Chair
  • Contact
  • Studies and Teaching
  • News
  • Research
    • Research topics Prof. Karl
      • Thermochemical Conversion and Chemical Energy Storage
      • Thermal Storage Systems and Carbon Capture
        • Ash melting behavior
        • BMEL-Project: EmissionPredictor
        • BMEL-project: SmartWirbelschicht
        • BMWi-project: ANICA
        • BMWi-project: BioWasteStirling
        • BMWi-project: FuelBand
        • BMWi-Projekt: FuelBand2
        • BMWK-project: OxyGreenCO₂
        • BMWK-Project: ProKläR-mission
        • CampusFES-project PlasmaGas
        • DFG-Project: KoksAgglomeration
        • E|Home-Center: HomeORC
        • EnCN - project part 1.1: Base load storage systems with low-temperature storages
        • EnCN - project part Peak-Load High Temperature Heat Storage
        • EU-Project SolBio-Rev
        • EU-Project STARTREC
        • Heatpipe-Reformer Technology
        • Hydrogen from biomass
        • Industrial research project „SteamCalciner“
        • Kinetics of Biomass Gasification
        • Stirling Engine
        • ZIM-Project Pyrolysis furnace
      • Energy Systems and Energy Economics
    • Research topics Prof. Herkendell
    • Publications
    • Research networks
    • Facilities

BMWi-project: BioWasteStirling

bmwiBMWi-project: BioWasteStirling – Power generation out of biogenous residuals by means of a stirling engine with liquified bed combustion

In the BioWasteStirling project, the use of biogenic residues in the biomass-fired Stirling engine for cogeneration is being investigated.

Support Code: FKZ 03KB122

Term: 09/01/2017 – 08/31/2020

PtJ

Projektträger Jülich

bmwi

Bundesministerium für Wirtschaft und Energie

energetische-biomassenutzung

Förderprogramm Energetische Biomassenutzung

 

Stadtwerke Wunnsiedel GmbH (SWW)

Technologie- und Förderzentrum (TFZ Straubing)

 

Assoziierter Partner:

Frauscher Thermal Motors GmbH

  • ‘Mit biogenen Reststoffen Strom erzeugen’, STROM-FORSCHUNG (17.12.2021)

The decentralization of the power and energy market in Germany requires the development and growth of efficient micro-scale solutions for combined heat and power (CHP). Within the scope of the research at EVT a fluidized bed fired stirling engine was assembled as lab scale plant and basic lab tests were carried out.

Abb 1: CFD-simulation of a horizontal cyclone

 

The project “BioWasteStirling“ responses to this concept. Its purpose is to develop a highly efficient and fuel-flexible micro CHP system, consisting out of a fluidized bed combustion with an integrated stirling engine, and prove it during a field test within a pilot-scale power range of 5 kWel.

Furthermore, the big advantage of fluidized bed combustions – the high fuel flexibility – shall be demonstrated for the first time in the small power range of combustion plants by using different biogenic solid fuels in the field test.

Besides the legal and economical analysis of different application scenarios of the micro CHP plant, also further numerical and experimental development of the particle separation by horizontal cyclones with regard to dust emissions takes place.

 

 

Abb 2: CFD-simulation of the heating surface of the stirling engine in the fluidized bed

 

Contact:

Prof. Dr.-Ing. Jürgen Karl

Prof. Dr.-Ing. Jürgen Karl

Lehrstuhlinhaber

Department of Chemical and Biological Engineering
Lehrstuhl für Energieverfahrenstechnik

  • Phone number: 09115302-99021
  • Email: juergen.karl@fau.de

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up