• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Energy Process Engineering
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • en
  • de
  • Mein Campus
  • UnivIS
  • FAU-directions
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Chair of Energy Process Engineering
Navigation Navigation close
  • Chair
    • Staff
    • Seating plan
    • Job offers
    Portal Chair
  • News
    • News
    • Events
    • Ph.D.-galery
    Portal News
  • Studies and Teaching
    • Courses
    • Theses options
    • The study programme ‘Energy Technology’
    Portal Studies and Teaching
  • Research
    • Research topics Prof. Karl
      • Thermochemical Conversion and Chemical Energy Storage
      • Thermal Storage Systems and Carbon Capture
      • Energy Systems and Energy Economics
    • Research topics Prof. Herkendell
    • Facilities
    • Publications
    • Research networks
    Portal Research
  • Contact
    • Directions
    Portal Contact
  1. Home
  2. Startpage of the Chair of Energy Process Engineering
  3. Research
  4. Research topics Prof. Karl
  5. Thermal Storage Systems and Carbon Capture
  6. CampusFES-project PlasmaGas

CampusFES-project PlasmaGas

In page navigation: Startpage of the Chair of Energy Process Engineering
  • Chair
  • Contact
  • Studies and Teaching
  • News
  • Research
    • Research topics Prof. Karl
      • Thermochemical Conversion and Chemical Energy Storage
      • Thermal Storage Systems and Carbon Capture
        • Ash melting behavior
        • BMEL-Project: EmissionPredictor
        • BMEL-project: SmartWirbelschicht
        • BMWi-project: ANICA
        • BMWi-project: BioWasteStirling
        • BMWi-project: FuelBand
        • BMWi-Projekt: FuelBand2
        • BMWK-project: OxyGreenCO₂
        • BMWK-Project: ProKläR-mission
        • CampusFES-project PlasmaGas
        • DFG-Project: KoksAgglomeration
        • E|Home-Center: HomeORC
        • EnCN - project part 1.1: Base load storage systems with low-temperature storages
        • EnCN - project part Peak-Load High Temperature Heat Storage
        • EU-Project SolBio-Rev
        • EU-Project STARTREC
        • Heatpipe-Reformer Technology
        • Hydrogen from biomass
        • Industrial research project „SteamCalciner“
        • Kinetics of Biomass Gasification
        • Stirling Engine
        • ZIM-Project Pyrolysis furnace
      • Energy Systems and Energy Economics
    • Research topics Prof. Herkendell
    • Publications
    • Research networks
    • Facilities

CampusFES-project PlasmaGas

Industrial research project ‘PlasmaGas’ – Plasma-assisted Biomass Gasification

The research project ‘PlasmaGas’ investigates the biomass gasification with and without non-thermal plasma to produce synthetic natural gas (SNG) efficiently.

 

Support Code: CampusFES-PlasmaGas

Term: 01.07.2014 – 30.09.2017

CampusFES

CampusFES

Siemens Logo

Siemens AG

Logo Lehrstuhl für Technische Thermodynamik

Lehrstuhl für Technische Thermodynamik, FAU Erlangen-Nürnberg

 

Siemens Logo

Siemens AG

The allothermal gasification technology is the key to produce hydrogen, synthetic natural gas and chemical products in the global energy transition. Compared to conventional thermal gasification, the plasma-assisted gasification could reach better reaction kinetics due to the existing free radicals and particles at high temperatures.

Droptube-Reaktor Skizze und Aufnahmen
Sketch and fotographies of the droptube-reactor

 

Amongst all, the most promising technology is the non-thermal plasma process, in which the thermal equilibrium state is not reached. The light electrons are accelerated through heating with an electrical field to the middle energy level, which is much higher than the energy level of neutral gas molecules. According to operation conditions, the gas temperature will be heated only by 10 K up to 1000 K.

 

Plasma-Filamente Simulation und Aufnahmen
Plasma-filaments: Simulation and reality

 

The dynamic flexibility of the plasma generator provides the possibility to use the excess current from the renewable sources. In this way, the reaction enthalpy of the endothermal gasification reactions can be offered from the fluctuated electrical energy. The electrical energy is converted to chemical energy and can either be stored in synthesis gas or through the following synthesis in liquid or gaseous secondary energy carriers.
The influence of the plasma on reaction kinetics of the biomass gasification will be investigated in this project.

 

Contact:

Prof. Dr.-Ing. Jürgen Karl

Prof. Dr.-Ing. Jürgen Karl

Lehrstuhlinhaber

Department of Chemical and Biological Engineering
Lehrstuhl für Energieverfahrenstechnik

  • Phone number: 09115302-99021
  • Email: juergen.karl@fau.de
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up