• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Energy Process Engineering
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • en
  • de
  • Mein Campus
  • UnivIS
  • FAU-directions
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Chair of Energy Process Engineering
Navigation Navigation close
  • Chair
    • Staff
    • Seating plan
    • Job offers
    Portal Chair
  • News
    • News
    • Events
    • Ph.D.-galery
    Portal News
  • Studies and Teaching
    • Courses
    • Theses options
    • The study programme ‘Energy Technology’
    Portal Studies and Teaching
  • Research
    • Research topics Prof. Karl
      • Thermochemical Conversion and Chemical Energy Storage
      • Thermal Storage Systems and Carbon Capture
      • Energy Systems and Energy Economics
    • Research topics Prof. Herkendell
    • Facilities
    • Publications
    • Research networks
    Portal Research
  • Contact
    • Directions
    Portal Contact
  1. Home
  2. Startpage of the Chair of Energy Process Engineering
  3. Research
  4. Research topics Prof. Karl
  5. Thermal Storage Systems and Carbon Capture
  6. BMEL-project: SmartWirbelschicht

BMEL-project: SmartWirbelschicht

In page navigation: Startpage of the Chair of Energy Process Engineering
  • Chair
  • Contact
  • Studies and Teaching
  • News
  • Research
    • Research topics Prof. Karl
      • Thermochemical Conversion and Chemical Energy Storage
      • Thermal Storage Systems and Carbon Capture
        • Ash melting behavior
        • BMEL-Project: EmissionPredictor
        • BMEL-project: SmartWirbelschicht
        • BMWi-project: ANICA
        • BMWi-project: BioWasteStirling
        • BMWi-project: FuelBand
        • BMWi-Projekt: FuelBand2
        • BMWK-project: OxyGreenCO₂
        • BMWK-Project: ProKläR-mission
        • CampusFES-project PlasmaGas
        • DFG-Project: KoksAgglomeration
        • E|Home-Center: HomeORC
        • EnCN - project part 1.1: Base load storage systems with low-temperature storages
        • EnCN - project part Peak-Load High Temperature Heat Storage
        • EU-Project SolBio-Rev
        • EU-Project STARTREC
        • Heatpipe-Reformer Technology
        • Hydrogen from biomass
        • Industrial research project „SteamCalciner“
        • Kinetics of Biomass Gasification
        • Stirling Engine
        • ZIM-Project Pyrolysis furnace
      • Energy Systems and Energy Economics
    • Research topics Prof. Herkendell
    • Publications
    • Research networks
    • Facilities

BMEL-project: SmartWirbelschicht

BMEL-project: SmartWirbelschicht – Low emission small scale fluidized-bed combustion for the use of biogenic residues

The project SmartWirbelschicht develops solutions for the improvement of the fluidized-bed combustion technology and identifies application fields for small scale plants, using biogenic residues.

Support Code: 22039018

Term: 01.06.2019 – 31.05.2022

FNR: Fachagentur Nachwachsende Rohstoffe e.V

Bundesministerium für Ernährung und Landwirtschaft

„Nachwachsende Rohstoffe“

Deutsches Biomasseforschungszentrum (DBFZ)

eta Energieberatung GmbH

Due to its high fuel flexibility, fluidized-bed combustion is a promising technology concerning the energetic use of residual biomass from forestry and agriculture.

Over the past years, the Chair of Energy Process Engineering developed an innovative concept for the cogeneration of heat and power, combining fluidized-bed combustion and Stirling engines.

The project SmartWirbelschicht focuses on the optimization of this plant concept using cpfd- and cfd-software for the simulative description of the whole system. Particular attention is being given to the formation of NOx emissions and the possibility of their reduction using the SNCR-technology. Therefore, SNCR will be integrated into the simulation model and demonstrated in practice. The successful implementation of the SNCR technology will extend the fuel spectrum, allowing the usage of biogenic residues, that contain a significant amount of nitrogen, without exceeding the NOx emission limits. Furthermore, an economical consideration will point out application fields for the system and lead to new partnerships for future scale-ups.

 

Ansprechpartner:

Julian Nix

Julian Nix, M. Sc.

Department of Chemical and Biological Engineering
Lehrstuhl für Energieverfahrenstechnik

  • Phone number: 09115302-99049
  • Email: julian.nix@fau.de

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up